Chapter 14 Thermal Energy and Heat

Study Guide

- 1. Temperature and Thermal Energy
 - a. Temperature
 - b. Temperature Scales
 - i. Fahrenheit Scale
 - ii. Celsius Scale
 - iii. Kelvin Scale
 - 1. Absolute Zero
 - c. Thermal Energy
- 2. The Nature of Heat
 - a. How Is Heat Transferred?
 - i. Conduction
 - ii. Convection
 - 1. Convection Current
 - iii. Radiation
 - b. Heat Moves One Way
 - c. Conductors and insulators
 - d. Specific Heat
- 3. Thermal Energy and States of Matter
 - a. Three States of Matter
 - i. Solid
 - ii. Liquids
 - iii. Gases
 - b. Changes of State
 - c. Solid-Liquid Changes of State
 - i. Melting
 - ii. Freezing
 - 1. Freezing Point
 - d. Liquid-Gas Changes of State
 - i. Vaporization
 - ii. Condensation

- e. Thermal Expansion
 - i. Thermometers
 - ii. Expanding Teeth
 - iii. Thermostats
 - 1. Bimetallic Strips
- 4. Uses of Heat
 - a. Heat Engines
 - i. External Combustion Engines
 - ii. Internal Combustion Engines
 - b. Refrigerators

REVIEW AND REINFORCE

Temperature and Thermal Energy

◆ Understanding Main Ideas

Write an answer for each of the following questions in the spaces provided.

- 1. If two glasses of water have the same temperature, do they necessarily have the same thermal energy? Explain.
- 2. Fill in the blanks in the table below.

	Temperature Scales			
Temperature	Kelvin (K)	a.	Fahrenheit (°F)	
absolute zero	b.	-273	-460	
water freezes	273	c.	32	
water boils	373	100	d.	

♦ Building Vocabulary

Match each term with its definition by writing the letter of the correct definition on the line beside the term.

 3. Fahrenheit scale
 3. Fahrenheit scale

- **4.** Celsius scale
- **5.** Kelvin scale
- **6.** absolute zero
- 7. thermal energy

1800	8. temperature
------	----------------

- **a.** the temperature scale used in most of the world
- **b.** the total energy of all the particles in a substance
- **c.** the temperature at which no more energy can be removed from matter
- **d.** a temperature scale in which the interval between the freezing point and the boiling point of water is divided into 180 equal parts
- e. a measure of the average kinetic energy of the individual particles in an object
- **f.** a temperature scale with no negative numbers

REVIEW AND REINFORCE

The Nature of Heat

Understanding Main Ideas

Fill in the spaces in the table below by writing whether the heat is transferred by convection, radiation, or conduction.

Heat Transfer Example	Method of Heat Transfer
An entire lake is heated by water from a hot spring at the bottom of the lake.	1.
Sunlight melts a wax crayon left outside.	2.
A burner on a stove heats the bottom of a pot.	3.
The inside frame of your front door feels cold during winter.	4.
A kite rises high above a hot, sandy beach.	5.
You feel the warm glow of a bonfire.	6.

Building Vocabulary

Fill in the blank to complete each sentence.

7.	Heat is transferred directly from one particle of matter to another by the
	process of
Q	is a transfer of thermal energy from a warmer object to

____ is a transfer of thermal energy from a warmer object to a cooler object.

9. A circular flow of warmer fluid and cooler fluid is called a(n)

10. The amount of energy required to raise the temperature of 1 kilogram of a substance by 1 kelvin is called its ______.

11. A(n) _____ is a material that does not conduct heat well.

12. ______ is the transfer of energy by electromagnetic waves.

13. Heat is transferred by the movement of currents within a fluid by a process

14. A(n) _____ is a material that transfers heat well.

Name	Date	Class
1 (42)20		

REVIEW AND REINFORCE

Thermal Energy and States of Matter

♦ Understanding Main Ideas

Answer the following questions on a separate sheet of paper.

- 1. A glass of ice at 0°C changes to a glass of water at 0°C. What caused the ice to change to water?
- 2. Why didn't the temperature of the water change in Question 1?
- **3.** Lengths of railway tracks have small gaps between them. Why are the tracks built this way and what might happen if there were no gaps?

♦ Building Vocabulary

From the list below, choos	se the term that best co	mpletes each sentenc	e.
state	change of state	boiling	evaporation
thermal expansion			
bimetallic strip	freezing point	condensation	
4. The change from a g	as to a liquid is called	•	•
5. A solid, a liquid, and of matter.	a gas are all example	s of a(n)	
6. The temperature at v	which matter changes	from a liquid to a so	olid is called
the	·		
7. A(n)	is a device that r	egulates heat.	
8. The expansion of ma	atter when it is heated	is known as	
9. The physical change	from one state of ma	tter to another is cal	led
10. A strip of two differ	ent metals joined toge	ther is called a(n)	
11. When vaporization t	takes place on the sur	face of a liquid, the p	process
is called	-		
12. When vaporization t		ow the surface of a l	iquid at
hiahau tamananatura	-		•

(

REVIEW AND REINFORCE

Uses of Heat

♦ Understanding Main Ideas

Write the letter of each characteristic in the correct area of the Venn diagram.

- a. Contains pistons and cylinders.
- **b.** Fuel is burned outside the engine.
- c. Examples are diesel and gasoline engines.
- d. An example is a steam engine.
- e. Thermal energy is converted to mechanical energy.
- **f.** Fuel is burned inside the engine.

◆ Building Vocabulary

Match each term with its definition by writing the letter of the correct definition on the line beside the term.

 4. neat engine		
 5. external combustion engine		
 6. internal combustion engine		
 7. refrigerator		
8 combustion		

- **a.** the process of burning a fuel such as wood or oil
- **b.** a device that converts thermal energy to mechanical energy
- **c.** a heat engine in which fuel is burned inside the engine
- **d.** a device that transfers thermal energy from a cool area to a warm area by using an outside energy source
- **e.** a heat engine in which fuel is burned outside the engine

Name:					Class:
Choos	e the letter of the correc	t answer.			
1.	A measure of the avera	ge kinetic energy of the	individ	lual particles in an	object is called
	[A] conduction.	[B] convection.			
2.	Which statement is true	e of gases?			
	[A] The particles that i	make up gases are packe	ed toget	ther in a relatively	fixed position.
	[B] Gases have a defin	iite shape.			
	[C] Gases have a defin	ite volume.			
	[D] Gases expand to fi	ll all the space available) .		
3.	Heated air moves from	baseboard heaters to th	e rest o	f a room in a proce	ess called
	[A] conduction.	[B] convection.	[C] i	insulation.	[D] radiation.
4.	The transfer of energy	by electromagnetic wav	es is ca	ılled	
	[A] insulation.	[B] radiation.	[C]	convection.	[D] conduction.
5.	Heat transfer occurs				
	[A] only from cold obj	jects to warmer ones.			
	[B] only from warm o	bjects to colder ones.			
	[C] both from warm o	bjects to colder ones and	d from	cold objects to war	mer ones.
	[D] in many directions	S.			
6.	A steam engine is an e	xample of a(n)			
	[A] eight-cylinder eng	ine.	[B]	internal combustio	n engine.
	[C] external combusti	on engine.	[D]	four-stroke engine	•
7.	A device that uses an carea is called	outside energy source to	transfe	er thermal energy fr	om a cool area to a warm
	[A] a refrigerator.	[B] a combustion en	gine.	[C] a vaporizer.	[D] a thermometer.
8.	The conversion of ther	mal energy into mechar	nical en	ergy requires a	
	[A] vaporizer.	[B] thermometer.	[C]	heat engine.	[D] thermostat.

9.	The addition or loss of thermal energy changes the arrangement of the particles during					
	[A] a change of state.	[B] radiation.	[C] convection.	[D] conduction.		
10.	Heat, like work, is an energy transfer measured in					
	[A] watts.	[B] degrees.	[C] kelvins.	[D] joules.		
11.	The amount of energy is called its	required to raise the	temperature of 1 kil	ogram of a substance by 1 kelvin		
	[A] specific heat.	[B] change of state	e. [C] heat trans	fer. [D] melting point.		
Fill in	the word or phrase that	best completes the s	tatement(s).			
12.	Iron has a higher specified of heat, the temperature	ic heat than silver. It of the	f 1 kg of iron and 1 will increase	kg of silver absorb equal amounts by a greater amount.		
13.	Most gasoline engines	are	stroke engines.			
14.	The handle of a spoon	in a bowl of soup be	comes warm becaus	e of heat transfer by the process of		
15.	Stars transfer thermal e	energy by the process	s of	·		
16.	Boiling is vaporization	that takes place at o	r	_ the surface of a liquid.		
17.	An increase in the total			sults in an increase in the		
18.		a thermostat bends a different rates.	s it is heated becaus	e the two metals in the strip		
19.	The joule per kilogram	-kelvin is the SI unit	for	·		
20.	Even though the water water in the bathtub ha molecules.	in a filled bathtub m s more	hay be at the same te	mperature as water in a teacup, the ontains a greater number of water		

Choose the letter of the correct answer.

If the statement is true, write true. If it is false, change the underlined word or words to make the statement true.

- 21. The more particles a substance has at a given temperature, the more thermal energy it has.
- 22. Trapped air is a good conductor because it reduces heat transfer.
- 23. A student lists three temperature measurements: 100° F, 100° C, and 100 K. Of the three measurements, 100 K is the highest temperature.
- 24. Particles of matter in the solid state are held together but can move around each other.
- 25. During the <u>power</u> stroke of a four-stroke engine, the fuel mixture is squeezed into a smaller volume.

Use the graph to answer the question(s).

Changes of State

26. What happens to each of the variables—temperature and thermal energy—during the changes indicated by line segments A and B?

Write an answer to the following question(s).

30. What is the difference between thermal energy and heat?

Use the diagram to answer the question(s).

Thermos Bottle

- 27. What purpose do you think the air space serves?
- 28. The glass walls of the device are covered with a shiny metallic coating. What type of heat transfer does the coating reduce? Explain.
- 29. The cap on the thermos bottle is made of plastic. How does the use of this material help the thermos bottle function?